Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pediatr ; 12: 1354475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567183

RESUMO

Objective: There are differences in the vulnerability of male and female fetal brains to adverse intrauterine exposure, preterm birth, and associated perinatal brain injury. The main objective of this study was to identify any statistically significant difference in the change of apparent diffusion coefficient (ADC) in the intracranial regions of male and female fetuses in the second and third trimesters. Methods: Diffusion-weighted imaging (DWI) was performed in 200 fetuses between 20 and 37 gestational ages (GA) with normal results or suspicious results on sonography followed by structural MRI. Pairwise ADC values of the regions of interest (ROIs) were manually delineated on either side of the cerebral white matter: frontal white matter (FWM), parietal white matter (PWM), occipital white matter (OWM), temporal white matter (TWM), basal ganglia (BG), thalamus (THA), cerebellar hemisphere (CBM), and a single measurement in the pons. The changes in these values were studied over the gestational range, along with potential sex differences and asymmetries of the cerebral hemispheres. Results: During the third trimester, ADC values in OWM, TWM, and CBM were significantly higher in male fetuses than those in female fetuses (p < 0.05). After the correction of false-discovery rates (FDR), the difference in CBM was the only statistically significant (p = 0.0032). However, the decreased rate of ADC values in male fetuses in CWM (except for FWM), BG, THA, CBM, and pons was higher than that in female fetuses during the second and third trimesters. Conclusions: We have shown some differences in the intracranial regional ADC changes between male and female fetuses using in utero DWI during the second and third trimesters.

2.
Front Neurosci ; 16: 886083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645723

RESUMO

Objective: The purpose of this study is to establish a reference of intracranial structure volumes in normal fetuses ranging from 19 to 37 weeks' gestation (mean 27 weeks). Materials and Methods: A retrospective analysis of 188 MRI examinations (1.5 T) of fetuses with a normal brain appearance (19-37 gestational weeks) from January 2018 to December 2021 was included in this study. Three dimensional (3-D) volumetric parameters from slice-to-volume reconstructed (SVR) images, such as total brain volume (TBV), cortical gray matter volume (GMV), subcortical brain tissue volume (SBV), intracranial cavity volume (ICV), lateral ventricles volume (VV), cerebellum volume (CBV), brainstem volume (BM), and extra-cerebrospinal fluid volume (e-CSFV), were quantified by manual segmentation from two experts. The mean, SD, minimum, maximum, median, and 25th and 75th quartiles for intracranial structures volume were calculated per gestational week. A linear regression analysis was used to determine the gestational weekly age-related change adjusted for sex. A t-test was used to compare the mean TBV and ICV values to previously reported values at each gestational week. The formulas to calculate intracranial structures volume derived from our data were created using a regression model. In addition, we compared the predicted mean TBV values derived by our formula with the expected mean TBV predicted by the previously reported Jarvis' formula at each time point. For intracranial volumes, the intraclass correlation coefficient (ICC) was calculated to convey association within and between observers. Results: The intracranial volume data are shown in graphs and tabular summaries. The male fetuses had significantly larger VV compared with female fetuses (p = 0.01). Measured mean ICV values at 19 weeks are significantly different from those published in the literature (p < 0.05). Means were compared with the expected TBV generated by the previously reported formula, showing statistically differences at 22, 26, 29, and 30 weeks' gestational age (GA) (all p < 0.05). A comparison between our data-derived formula and the previously reported formula for TBV showed very similar values at every GA. The predicted TBV means derived from the previously reported formula were all within the 95% confidence interval (CI) of the predicted means of this study. Intra- and inter-observer agreement was high, with an intraclass correlation coefficient larger than 0.98. Conclusion: We have shown that the intracranial structural volume of the fetal brain can be reliably quantified using 3-D volumetric MRI with a high degree of reproducibility and reinforces the existing data with more robust data in the earlier second and third stages of pregnancy.

3.
J Magn Reson Imaging ; 54(1): 263-272, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33559371

RESUMO

BACKGROUND: Several published studies have shown alterations of brain development in third-trimester fetuses with congenital heart disease (CHD). However, little is known about the timing and pattern of altered brain development in fetuses with CHD. PURPOSE: To investigate the changes in the volume of intracranial structures in fetuses with CHD by three-dimensional (3D) volumetric magnetic resonance imaging (MRI) in the earlier stages of pregnancy (median gestational age [GA], 26 weeks). STUDY TYPE: Retrospective. POPULATION: Forty women carrying a fetus with CHD (including 20 fetuses with GA <26 weeks) and 120 pregnant women carrying a healthy fetus (including 50 fetuses with GA <26 weeks). FIELD STRENGTH/SEQUENCE: Two-dimensional single-shot turbo spin echo sequence at 1.5 -T. ASSESSMENT: Three-dimensional volumetric parameters from slice-to-volume registered images, including cortical gray matter volume (GMV), subcortical brain tissue volume (SBV), intracranial cavity volume (ICV), lateral ventricles volume (VV), cerebellum, brainstem, and extra-cerebrospinal fluid (e-CSF) were quantified by manual segmentation from one primary and two secondary observers. STATISTICAL TESTS: Volumes were presented graphically with quadratic curve fitting. Scatterplots were produced mapping volumes against GA in normal and CHD fetuses. For GA <26 weeks, Z scores were calculated and Student's t-tests were conducted to compare volumes between the normal and CHD fetuses. RESULTS: In fetuses with CHD GMV, SBV, cerebellum, and brainstem were significantly reduced (all P < 0.05) in early stages of pregnancy (GA <26 weeks), with differences becoming progressively greater with increasing GA. Compared with normal fetuses, e-CSF, e-CSF to ICV ratio, and VV were higher in fetuses with CHD (all P < 0.05). However, ICV volume and the GMV to SBV ratio were not significantly reduced in the CHD group (P = 0.94 and P = 0.13, respectively) during the middle gestation (GA <26 weeks). DATA CONCLUSION: There appear to be alterations of brain development trajectory in CHD fetuses that can be detected by 3D volumetric MRI in the earlier stages of pregnancy. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 3.


Assuntos
Cardiopatias Congênitas , Diagnóstico Pré-Natal , Encéfalo/diagnóstico por imagem , Feminino , Feto , Cardiopatias Congênitas/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Lactente , Imageamento por Ressonância Magnética , Gravidez , Estudos Retrospectivos
4.
Sci Rep ; 10(1): 12373, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704065

RESUMO

Unlike ultrasound (US) imaging, foetal magnetic resonance imaging (MRI) is not significantly limited by maternal obesity, oligohydramnios, uterine myoma, twins, and foetal lie, which impair US visualization of the foetus. The present study aimed to introduce our foetal cardiac MRI scanning technology and over 14-years of experience on the potential utility of foetal cardiac MRI examination as an adjunct to foetal technically inadequate echocardiography (Echo). This retrospective review included 1,573 pregnant women [1,619 foetuses (46 twins)] referred for a foetal cardiac MRI because of technically limited Echo. Foetal cardiac MRI was performed using two 1.5 T units. Among the 1,619 foetuses referred for cardiac MRI, 1,379 (85.2%) cases were followed up using postnatal imaging and/or surgery, 240 (14.8%), including three twins, had no follow-up confirmation because of pregnancy termination without autopsy or loss to follow-up. The results of the present study indicated that foetal cardiac MRI examinations can be a useful adjunct to foetal echocardiography when the technical limitations of echocardiography make it inadequate for diagnosis.


Assuntos
Ecocardiografia , Coração Fetal/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Diagnóstico Pré-Natal , Ultrassonografia Pré-Natal , Adulto , Feminino , Seguimentos , Humanos , Gravidez , Gravidez de Gêmeos , Estudos Retrospectivos , Gêmeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...